Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37899589

RESUMEN

The increasing burden of cutaneous wound infections with drug-resistant bacteria underlines the dire need for novel treatment approaches. Here, we report the preparation steps, characterization, and antibacterial efficacy of novel chitosan-coated Prussian blue nanoparticles loaded with the photosensitizer fluorescein isothiocyanate-dextran (CHPB-FD). With excellent photothermal and photodynamic properties, CHPB-FD nanoparticles can effectively eradicate both Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa in vitro and in vivo. The antibacterial efficacy of CHPB-FD nanophotonic particles further increases in the presence of white light. Using a bacteria-infected cutaneous wound rat model, we demonstrate that CHPB-FD particles upregulate genes involved in tissue remodeling, promote collagen deposition, reduce unwanted inflammation, and enhance healing. The light-responsive CHPB-FD nanophotonic particles can, therefore, be potentially used as an economical and safe alternative to antibiotics for effectively decontaminating skin wounds and for disinfecting biomedical equipment and surfaces in hospitals and other places.

2.
Bioorg Chem ; 129: 106197, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36260955

RESUMEN

Gene delivery combined with systemic targeting approach has shown promising potential in cancer gene therapy. Peptides are ideal functional motif for constructing biocompatible non-viral gene delivery vehicles. RGD peptides, in particular, are known to recognize the integrin αVß3, which is expressed specifically on angiogenic blood vessels and, therefore, is considered vital for anti-angiogenesis strategies and cancer treatment. In recent times, several RGD peptide-based non-viral gene delivery vectors have been utilized for targeted gene delivery, however, lack in proteolytic stability. In the current study, we have investigated a series of non-naturally modified RGD peptide mimic (MOH) nanoconjugates with low molecular weight branched polyethylenimine (bPEI 1.8 kDa). The projected peptide mimic, Fmoc-FFARKA (MOH), has already been demonstrated to have high binding efficiency for αVß3 integrins and enhanced cell adhesive ability with high stability compared to the natural RGD counterpart. The polymer-peptide, PEI-MOH (PMOH), nanoconjugate vectors have been designed to enhance the tumor targeting ability, therapeutic proficiency, transfection efficiency and proteolytic stability. The synthesized nanoconjugates showed the ability to protect the bound DNA with low cytotoxicity and their pDNA complexes displayed enhanced transfection efficiency. Furthermore, a competitive study confirmed their selective behavior towards liver cancer cells, HepG2. Lastly, PMOH nanoconjugates also exerted significant antimicrobial effects against drug-resistant pathogens. Altogether, the data suggest that nanosized non-naturally modified RGD peptide mimic-based gene vectors hold great potential as efficient biomaterials for targeted gene delivery and antimicrobial applications.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos , Nanoconjugados , Neoplasias , Oligopéptidos , Peptidomiméticos , Humanos , Cationes , Genes Relacionados con las Neoplasias , Neoplasias/genética , Neoplasias/terapia , Oligopéptidos/administración & dosificación , Antineoplásicos/administración & dosificación , Terapia Genética/métodos
3.
Indian J Microbiol ; 62(3): 411-418, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35974923

RESUMEN

This study demonstrates the therapeutic potential of indole-3-butanoyl-polyethylenimine (IBP) nanostructures formed via self-assembly in aqueous system. Dynamic light scattering (DLS) analysis confirmed the formation of the nanostructures in the size range of ~ 194-331 nm. These nanostructures showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria. Besides, appreciable antioxidant and anti-inflammatory activities were also observed. Results of cytotoxicity studies, performed on normal transformed human embryonic kidney (HEK 293) cells and human red blood cells (hRBCs), revealed almost non-toxic behavior of these nanostructures, however, remarkable toxicity on human breast cancer cells (MCF-7), human osteosarcoma cells (Mg63) and human liver cancer cells (HepG2) was observed. The pre-apoptotic and anti-proliferative activity of IBP nanostructures were confirmed by acridine orange/propidium iodide dual staining assay followed by confocal microscopy and scratch assay on Mg63 cells. Taken together, these results advocate the promising potential of the synthesized IBP nanostructures in the therapeutic applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01015-y.

5.
J Nanobiotechnology ; 20(1): 375, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35953826

RESUMEN

Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of "post-antibiotic era". It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.


Asunto(s)
Antiinfecciosos , Tratamiento Farmacológico de COVID-19 , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana , Humanos , ARN Viral , SARS-CoV-2
6.
Biomater Adv ; 133: 112633, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35527136

RESUMEN

Ability of the cells to adhere to an extracellular material is central to successful tissue genesis. Arg-Gly-Asp (RGD) sequences found in extracellular matrix proteins are well known for cell adhesion, however, enzymatic degradation and lack of specificity have limited their widespread use. Besides, a multifunctional material with inherent antimicrobial ability would help in invigorating the practical tissue engineering applications. Here, we report novel modified RGD (MR) and RGD mimic [R(K)] peptides (MOH and MNH2) which were synthesized post-in-silico screening, based on their interactions with integrin protein αVß3 using HEX 8.0 docking server. These mimics, containing hydrophobic Phe-Phe (FF) moiety which has been specifically introduced to initiate the self-assembling process of ß-sheet structures, were characterized thoroughly using various physicochemical and spectroscopic techniques. Under physiological conditions, these mimetics displayed thixotropic behavior rendering them highly suitable as injectable hydrogels having an added advantage of site-specific targeting abilities. Electron microscopy further revealed the formation of nanofibers upon self-assembly of these peptides. Besides, enhanced cell adhesiveness by these peptides compared to the commercial Poly l-lysine coated surfaces as well as the inherent antimicrobial potential against both sensitive and antibiotic-resistant pathogens (Methicillin-resistant Staphylococcus aureus and multi-drug resistant Salmonella enteritidis) substantiated the applicability of these unique injectable hydrogels wherein the porous fibrous framework offered a favorable environment for drug entrapment and 3D cell culture. Altogether, these properties render these novel RGD mimic peptides as promising multifunctional candidates for various tissue regenerative applications.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Peptidomiméticos , Materiales Biocompatibles , Hidrogeles/química , Oligopéptidos/farmacología , Péptidos/química , Peptidomiméticos/farmacología , Conformación Proteica en Lámina beta
7.
Bioorg Chem ; 106: 104463, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33213896

RESUMEN

In this study, indole-3-butanoic acid (IBA), a biologically and environmentally safe entity, has been grafted onto low and high molecular weight (1.8 and 25 kDa) polyethylenimines (PEI) mainly through primary amines to obtain amphiphilic indole-3-butanoyl-polyethylenimines (IBPs). Two series of IBPs (IBP1.8 and IBP25) were prepared which, on self-assembly in aqueous medium, yielded multifunctional nanomicellar structures (IBP1.8 and IBP25) capable of transporting genetic material in vitro and exhibiting other biological activities. Physicochemical characterization showed the size of IBP1.8 and IBP25 nanostructures in the range of ~332-234 nm and ~283-166 nm, respectively, with zeta potential varying from ~+29-17 mV and ~+37-25 mV. DNA release assay demonstrated higher release of plasmid DNA from IBP nanostructures as compared to native PEIs. Cytotoxicity showed a decreasing pattern with increasing degree of grafting of IBA onto PEIs making these nanostructures non-toxic. pDNA complexes of these nanostructures (both IBPs1.8 and IBPs25) displayed considerably higher transfection efficiency, however, IBP1.8/pDNA complexes performed much better (~7-9 folds) as compared to native PEI/pDNA and Lipofectamine/pDNA complexes on mammalian cells. CLSM analysis revealed that these complexes entered nucleus in sufficient amounts suggesting higher uptake and efficient internalization of the complexes. Besides, these supramolecular nanostructures not only exhibited excellent antimicrobial potential (MIC ~49-100 µg/ml) against clinical as well as resistant pathogenic strains but also found to possess antioxidant property. Overall, the projected low molecular weight PEI-based vectors could serve as more effective multifunctional nanomaterials having promising potential for future gene therapy applications with capability to provide protection against other bacterial infections.


Asunto(s)
Antibacterianos/farmacología , ADN/metabolismo , Portadores de Fármacos/farmacología , Nanoestructuras/química , Polietileneimina/farmacología , Antibacterianos/síntesis química , Antibacterianos/toxicidad , ADN/química , Portadores de Fármacos/síntesis química , Escherichia coli/efectos de los fármacos , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/toxicidad , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Indoles/síntesis química , Indoles/farmacología , Indoles/toxicidad , Células MCF-7 , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Micelas , Pruebas de Sensibilidad Microbiana , Nanoestructuras/toxicidad , Polietileneimina/síntesis química , Polietileneimina/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos
8.
Mater Sci Eng C Mater Biol Appl ; 113: 110982, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487399

RESUMEN

We report the synthesis of novel silver-doped Prussian blue nanoscale coordination polymers (SPB NCPs), for dual modality photothermal ablation and oxidative toxicity in bacterial cells. The comparison of SPB NCPs (having Fe-CN-Ag bonds) with the conventionally used Prussian blue nanoscale coordination polymers (PB NCPs, having Fe-CN-Fe bonds) was investigated in terms of their physical and therapeutic properties. It was observed that both PB and SPB NCPs have similar physical dimensions, crystalline phase and optical properties. Both these NCPs showed robust photothermal effect by heat generation (hyperthermia) upon exposure to red laser light. However, among the two, only SPB NCP showed oxidase-like activity by generating H2O2 in aqueous medium, presumably due to its silver content. In vitro antibacterial studies revealed that the SPB NCPs, but not PB NCPs, show inherent toxicity towards bacteria with an IC50 value close to 2.5 µg/ml. It can be inferred that this toxicity is oxidative in nature, as a result of the oxidase-like behaviour shown by SPB NCPs. Furthermore, light activation resulted in substantial additional antibacterial effect (photothermal toxicity) in bacterial cells treated with SPB NCPs. In comparison, marginal additional photothermal toxicity was observed in PB NCP-treated bacteria. Thus, we conclude that the combination of dual modality oxidative and photothermal toxicities demonstrated by SPB NCPs, but not by control PB NCPs, makes the former promising antibacterial agents at low dosages.


Asunto(s)
Antibacterianos/química , Ferrocianuros/química , Nanoestructuras/química , Polímeros/química , Plata/química , Antibacterianos/farmacología , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Luz , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
9.
ACS Omega ; 5(1): 597-602, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31956807

RESUMEN

Bacterial infections pose a major threat to human health, primarily because of the evolution of mutated strains that are resistant to antibiotic treatment. As a viable alternative, several nanoparticles have emerged as attractive antibacterial agents. Herein, we report the development of iron sulfide (FeS) nanoparticles that show dual-modality therapy: namely reactive oxygen species (ROS)-induced toxicity and red-laser induced photothermal therapy. The aqueous synthesized nanoparticles have been characterized based on their size, shape, crystallinity, and magnetic and optical properties. These nanoparticles showed sustained release of Fe2+ ions in an aqueous dispersion. They also have a high absorption cross-section in the visible and near infra-red regions and could be excited by a continuous wave diode laser of wavelength 635 nm leading to significant hyperthermia. Nanoparticle treatment, followed by light irradiation, led to significant cell death in two ghastly pathogenic bacterial strains. Stepwise enhancement of intrabacterial ROS levels, as a result of nanoparticle treatment followed by light activation, has been identified as the primary antibacterial mechanism.

10.
Mater Sci Eng C Mater Biol Appl ; 107: 110284, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761233

RESUMEN

Development of nanoparticle- and self-assembled nanomaterial-based therapeutics has become a rapidly growing area in the field of nanotechnology. One of the natural compounds, dopamine, presents as a neurotransmitter in the human brain serving as a messenger and deals with the behavioural responses, has provided an ideal platform through self-polymerization under aerobic conditions leading to the formation of a beneficial organic biopolymer, polydopamine (PDA). This polymer provides sufficient reactive functionalities, which can further be use to attach amine- or thiol-containing ligands to obtain conjugates. In the present study, self-polymerized polydopamine nanoparticles have been synthesized and tethered to aminoglycosides (AGs: Gentamicin, Kanamycin and Neomycin) through amino moieties to obtain PDA-AG nanoconjugates. These nanoconjugates are characterized by physicochemical techniques and evaluated for their antimicrobial potency against various bacterial strains including resistant ones. Simultaneously, cytocompatibility was also assessed for PDA-AG nanoconjugates. Of these three nanoconjugates (PDA-Gentamicin, PDA-Kanamycin and PDA-Neomycin), PDA-Kanamycin (PDA-K) nanoconjugate exhibited the highest activity against potent pathogens, least toxicity in human embryonic kidney (HEK 293) cells and intense toxic effects on human glioblastoma (U87) cells. Together, these results advocate the promising potential of these nanoconjugates to be used as potent antimicrobials in future applications.


Asunto(s)
Aminoglicósidos , Antibacterianos , Indoles , Nanoconjugados , Polímeros , Aminoglicósidos/química , Aminoglicósidos/farmacología , Aminoglicósidos/toxicidad , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Células HEK293 , Humanos , Indoles/química , Indoles/toxicidad , Pruebas de Sensibilidad Microbiana , Nanoconjugados/química , Nanoconjugados/toxicidad , Polímeros/química , Polímeros/toxicidad
11.
ACS Appl Mater Interfaces ; 10(18): 15401-15411, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29671574

RESUMEN

Zinc oxide (ZnO) nanoparticles have been shown in the literature to have antibacterial properties and have been widely used in antibacterial formulations. However, one of the problems with ZnO nanoparticles is their tendency to aggregate, thereby causing damage to normal cells and lowering their antibacterial efficacy during application. In this work, we have attempted to avoid this by using a combination of ZnO nanoparticles and ionic liquids, a class of low melting salts containing organic cations and organic/inorganic anions that show antibacterial property as well, and tested the antibacterial activity of this dispersion. ZnO nanoparticles of 60 nm were dispersed in two different ionic liquids-choline acetate (IL1) and 1-butyl-3-methylimidazolium chloride (IL2)-to achieve high dispersibility, whereas ZnO dispersed in phosphate-buffered saline was taken as a control. These dispersions were tested on four strains- Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, and Staphylococcus epidermidis. Maximum efficiency was obtained for ZnO nanoparticles dispersed in imidazolium-based ionic liquids against skin-specific S. epidermidis. Skin infections induced by S. epidermidis are prevalent in hospital-acquired diseases. In most cases, traditional antibiotic-based therapies fail to combat such infections. Our strategy of developing a dispersion of ZnO nanoparticles in ionic liquids shows superior antibacterial efficacy in comparison to that shown individually by ZnO nanoparticles or ionic liquids. We have also established that the mechanism of killing this skin-specific bacterium is possibly through the production of reactive oxygen species leading to bacterial cell lysis. Further, we showed that this formulation is biocompatible and nontoxic to normal keratinocyte cells even under coculture conditions.


Asunto(s)
Nanopartículas , Antibacterianos , Antiinfecciosos , Líquidos Iónicos , Óxido de Zinc
12.
Mater Sci Eng C Mater Biol Appl ; 80: 659-669, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866213

RESUMEN

This study demonstrates the therapeutic potential of silver nanoparticles (AgNPs), which were biosynthesized using the extracts of Citrus maxima plant. Characterization through UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) confirmed the formation of AgNps in nano-size range. These nanoparticles exhibited enhanced antioxidative activity and showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria that were later confirmed by TEM. These particles exhibited minimal toxicity when cytotoxicity study was performed on normal human lung fibroblast cell line as well as human red blood cells. It was quite noteworthy that these particles showed remarkable cytotoxicity on human fibrosarcoma and mouse melanoma cell line (B16-F10). Additionally, the apoptotic topographies of B16-F10 cells treated with AgNps were confirmed by using acridine orange and ethidium bromide dual dye staining, caspase-3 assay, DNA fragmentation assay followed by cell cycle analysis using fluorescence-activated cell sorting. Taken together, these results advocate promising potential of the biosynthesized AgNps for their use in therapeutic applications.


Asunto(s)
Nanopartículas del Metal , Animales , Antiinfecciosos , Resistencia a Múltiples Medicamentos , Citometría de Flujo , Humanos , Ratones , Plata , Difracción de Rayos X
13.
Colloids Surf B Biointerfaces ; 148: 481-486, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27665381

RESUMEN

The present study demonstrates the use of self-assembled nanostructures of cationic amphiphilic azobenzene-neomycin (a small molecule) conjugate, Azo-Neo, as delivery vector for plasmid DNA. These nanostructures efficiently condensed nucleic acid and formed more compact nanoassemblies. DLS analysis showed size and zeta potential of the resulting Azo-Neo/pDNA nanoassemblies ∼153.7nm and +7.26mV, respectively. The nanoassemblies were characterized by physicochemical techniques and evaluated for its toxicity and ability to deliver nucleic acid therapeutics. The flow cytometry results on MCF-7 and HEK293T cells revealed that Azo-Neo/pDNA nanoassemblies transfected ∼31% and 23% cells, respectively, at a w/w ratio of 250, while the standard transfection reagent, bPEI/pDNA complex, could transfect only ∼21% and 29% cells, respectively, at its best w:w ratio of 2.3. MTT and hemolysis assays showed the non-toxic nature of the projected nanoassemblies and nanostructures, respectively, at various concentrations. Further, Azo-Neo nanostructures showed efficient antibacterial activity against different strains, laboratory strain of Staphylococcus aureus (MTCC 740) as well as MRSA strains (Staphylococcus aureus ATCC 33591, ATCC 43300 and ATCC 700699). These results ensure the great potential of these nanostructures in gene delivery and antimicrobial applications.


Asunto(s)
Compuestos Azo/química , ADN/genética , Nanoestructuras/química , Neomicina/química , Transfección/métodos , Antibacterianos/química , Antibacterianos/farmacología , Compuestos Azo/farmacología , Supervivencia Celular/efectos de los fármacos , ADN/química , Citometría de Flujo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7 , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Nanoestructuras/ultraestructura , Neomicina/farmacología , Tamaño de la Partícula , Plásmidos/química , Plásmidos/genética , Staphylococcus aureus/efectos de los fármacos
14.
J Mater Chem B ; 2(30): 4848-4861, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32261776

RESUMEN

In this study, a modified dehydropeptide, Boc-FΔF-εAhx-OH, was conjugated with an aminoglycoside antibiotic, neomycin, to construct a multifunctional conjugate, Pep-Neo. The amphiphilic conjugate (Pep-Neo) was able to self-assemble into cationic nanostructures in an aqueous solution at low concentrations. Nanostructure formation was evidenced by TEM and dynamic light scattering analyses. The average hydrodynamic diameter of the self-assembled Pep-Neo nanostructures was found to be ∼279 nm with a zeta potential of +28 mV. The formation of nanostructures with a hydrophobic core and cationic hydrophilic shell resulted in an increased local concentration of cationic charge (ca. in 50% aqueous methanol, i.e. disassembled structure, zeta potential decreased to +17.6 mV), leading to efficient interactions with negatively charged plasmid DNA (pDNA). The size and zeta potential of the resulting Pep-Neo/pDNA complex were found to be ∼154 nm and +19.4 mV, respectively. Having been characterized by physicochemical techniques, the complex was evaluated for its toxicity and ability to deliver nucleic acid therapeutics. The flow cytometry results on MCF-7 cells revealed that Pep-Neo/pDNA complex transfected ∼27% cells at a w/w ratio of 66.6 while the standard transfection reagent, Lipofectamine, could transfect only ∼15% cells. MTT and hemolysis assays showed the non-toxic nature of the projected conjugate at various concentrations. Further, these nanostructures were shown to encapsulate hydrophobic drugs in the core. Finally, Pep-Neo nanostructures showed efficient antibacterial activity against different strains of Gram-positive and -negative bacteria. Interestingly, unlike neomycin, which is highly effective against Gram-negative bacteria, these nanostructures showed considerably high efficiency against Gram-positive strains, highlighting the promising potential of these nanostructures for various biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA